A Real-Time Detecting Algorithm for Tracking Community Structure of Dynamic Networks

نویسندگان

  • Jiaxing Shang
  • Lianchen Liu
  • Feng Xie
  • Zhen Chen
  • Jiajia Miao
  • Xuelin Fang
  • Cheng Wu
چکیده

In this paper a simple but efficient real-time detecting algorithm is proposed for tracking community structure of dynamic networks. Community structure is intuitively characterized as divisions of network nodes into subgroups, within which nodes are densely connected while between which they are sparsely connected. To evaluate the quality of community structure of a network, a metric called modularity is proposed and many algorithms are developed on optimizing it. However, most of the modularity based algorithms deal with static networks and cannot be performed frequently, due to their high computing complexity. In order to track the community structure of dynamic networks in a finegrained way, we propose a modularity based algorithm that is incremental and has very low computing complexity. In our algorithm we adopt a two-step approach. Firstly we apply the Blondel et al’s algorithm for detecting static communities to obtain an initial community structure. Then, apply our incremental updating strategies to track the dynamic communities. The performance of our algorithm is measured in terms of the modularity. We test the algorithm on tracking community structure of Enron Email and three other real world datasets. The experimental results show that our algorithm can keep track of community structure in time and outperform the well known CNM algorithm in terms of modularity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1407.2683  شماره 

صفحات  -

تاریخ انتشار 2012